
SA367 Mathematical Models for Decision Making Spring 2018 Uhan

Lesson 8. SolvingDynamic Programs with networkx

Overview

● In this lesson, we’ll revisit a few examples of dynamic programs and solve them with networkx.

_e knapsack problem, revisited

You are a thief deciding which precious metals to steal from a vault:

Metal Weight (kg) Value

1 Gold 3 11
2 Silver 2 7
3 Platinum 4 12

You have a knapsack that can hold at most 8 kg. If you decide to take a particular metal, you must take all of it. Which
items should you take to maximize the value of your the�?

● Recall that we formulated this problem as a dynamic program with the following longest path representation:

○ Stage t represents the decision to take item t (t = 1, 2, 3), or the end of the decision-making process (t = 4).
○ Node tn represents having n kgs le� in knapsack at stage t (n = 0, 1, . . . , 8).

DP for knapsack example

● We know how to solve shortest/longest path problems using networkx, so we can apply the same ideas here.

● _ere is a Python data structure that makes this a little easier...

1

Tuples

● A tuple is like a list, except once it’s been deûned, it cannot be changed.

● A tuple is written as a sequence of comma-separated items between round brackets. For example:

In [2]: # Define a tuple corresponding to taking
silver with 5 kgs left in the knapsack
stage = (2, 5)

● Tuples are ideal for things like names of nodes— things that you want to make permanent and not accidentally
change.

Back to the knapsack problem...

● We can use a tuple to represent the name of each node in our dynamic program, since each node’s name has two
distinct parts: the stage and the state.

● Before we do anything, we need to import networkx and bellmanford:

In [3]: import networkx as nx
import bellmanford as bf

● Let’s begin by creating an empty graph:

In [4]: # Create empty graph
G = nx.DiGraph()

● Next, let’s add the stage-state nodes to the graph, using for loops. Remember that range(a, b) iterates over the
integers a, a + 1, ..., b - 1.

In [5]: # Add the stage-state nodes
for t in range(1, 5):

for n in range(0, 9):
G.add_node((t, n))

● We also need to add the special "end" node:

In [6]: # Add the end node
G.add_node("end")

● Now we need to add the edges.

● _ere are a lot of them, so we’ll want to use some for loops.

● _e best way to use for loops depends on the shortest/longest path representation of the DP.

● For example, looking above, we can add all the red edges of length 0— corresponding to not taking the item—
in one fell swoop, like this:

2

In [7]: # Add edges corresponding to not taking an item
(red edges of length 0)
for t in range(1, 4):

for n in range(0, 9):
G.add_edge((t, n), (t + 1, n), length=0)

● Next, we can add the green edges of length 11, corresponding to taking item 1 (gold). Don’t forget our DP is a
longest path problem!

In [8]: # Add edges corresponding to taking item 1
(green edges of length 11)
for n in range(3, 9):

G.add_edge((1, n), (2, n - 3), length=-11)

● We can do something similar for the light blue and orange edges as well:

In [9]: # Add edges corresponding to taking item 2
(light blue edges of length 7)
for n in range(2, 9):

G.add_edge((2, n), (3, n - 2), length=-7)

Add edges corresponding to taking item 3
(orange edges of length 12)
for n in range(4, 9):

G.add_edge((3, n), (4, n - 4), length=-12)

● Finally, we can add the edges from the last stage nodes to the special "end" node:

In [10]: # Add edges from stage 4 to the end node
for n in range(0, 9):

G.add_edge((4, n), "end", length=0)

● Now, we can solve the dynamic program using the Bellman-Ford algorithm, just as before:

In [11]: # Solve DP by solving its shortest path representation using Bellman-Ford
length, nodes, negative_cycle = bf.bellman_ford(G, source=(1, 8), target="end",
weight="length")
print("Shortest path length: {0}".format(length))
print("Shortest path: {0}".format(nodes))

Shortest path length: -23
Shortest path: [(1, 8), (2, 5), (3, 5), (4, 1), 'end']

Interpreting the output

● What is themaximum value we can carry in the knapsack?

_emaximum value we can carry in the knapsack is 23, the negative of the shortest path length.

● Which items should we take to obtain this maximum value?

According to the edges in the shortest path, we should take the gold and platinum, but not the silver.

3

Practicemakes perfect— on your own

● Here are a twomore examples of dynamic programswemodeled in a previous lesson. Solve them using networkx
and interpret the output.

Assigning patrol cars to precincts

_e Simplexville Police Department wants to determine how to assign patrol cars to each precinct in Simplexville.
Each precinct can be assigned 0, 1, or 2 patrol cars. _e number of crimes in each precinct depends on the number of
patrol cars assigned to each precinct:

Precinct 0 patrol cars 1 patrol cars 2 patrol cars

1 14 10 7
2 25 19 17
3 20 14 11

_e department has 5 patrol cars. _e department’s goal is to minimize the total number of crimes across all 3 precincts.

● We formulated this problem as a dynamic program with the following shortest path representation:

○ Stage t represents the decision to assign patrol cars to precinct t (t = 1, 2, 3) or the end of the decision-
making process (t = 4).
○ Node tn represents having n patrol cars le� at stage t (n = 0, 1, . . . , 5).

DP for patrol car example

In [12]: # Solve this DP using networkx here
Create empty graph
G = nx.DiGraph()

Add the stage-state nodes
for t in range(1, 5):

4

for n in range(0, 6):
G.add_node((t, n))

Add the end node
G.add_node("end")

Add edges corresponding to adding 0 patrol cars - red edges
for n in range(0, 6):

precinct 1: length 14
G.add_edge((1, n), (2, n), length=14)

precinct 2: length 25
G.add_edge((2, n), (3, n), length=25)

precinct 3: length 20
G.add_edge((3, n), (4, n), length=20)

Add edges corresponding to adding 1 patrol car - orange edges
for n in range(1, 6):

precinct 1: length 10
G.add_edge((1, n), (2, n - 1), length=10)

precinct 2: length 19
G.add_edge((2, n), (3, n - 1), length=19)

precinct 3: length 14
G.add_edge((3, n), (4, n - 1), length=14)

Add edges corresponding to adding 2 patrol cars - green edges
for n in range(2, 6):

precinct 1: length 7
G.add_edge((1, n), (2, n - 2), length=7)

precinct 2: length 17
G.add_edge((2, n), (3, n - 2), length=17)

precinct 3: length 11
G.add_edge((3, n), (4, n - 2), length=11)

Add edges from last stage to the end node
for n in range(0, 6):

G.add_edge((4, n), "end", length=0)

Solve DP by solving its shortest path representation using Bellman-Ford
length, nodes, negative_cycle = bf.bellman_ford(G, source=(1, 5), target="end",
weight="length")
print("Shortest path length: {0}".format(length))
print("Shortest path: {0}".format(nodes))

Shortest path length: 37
Shortest path: [(1, 5), (2, 3), (3, 2), (4, 0), 'end']

● _eminimum number of crimes as a result of assigning the 5 patrol cars to the 3 precincts is 37, the shortest
path length.

● To achieve this minimum number of crimes, assign 2 patrol cars to precinct 1, 1 patrol car to precinct 2, and 2
patrol cars to precinct 3.

5

Inventory management

_e Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. _e company must
supply 1 batch next month, then 2 and 4 in successivemonths. Each month in which the company produces the beer
requires a factory setup cost of $5,000. Each batch of beer costs $2,000 to produce. Batches can be held in inventory at
a cost of $1,000 per batch per month. Capacity limitations allow amaximum of 3 batches to be produced during each
month. In addition, the size of the company’s warehouse restricts the ending inventory for each month to at most 3
batches. _e company has no initial inventory.

_e company wants to ûnd a production plan that will meet all demands on time andminimizes its total production
and holding costs over the next 3 months.

● We formulated this problem as a dynamic program with the following shortest path representation:

○ Stage t represents deciding to produce in month t (t = 1, 2, 3), or the end of the decision-making process
(t = 4).
○ Node tn represents having n batches in inventory at the end of stage t (n = 0, 1, 2, 3).

DP for inventory management example

In [13]: # Solve this DP using networkx here
Create empty graph
G = nx.DiGraph()

Add the stage-state nodes
for t in range(1, 5):

for n in range(0, 3):
G.add_node((t, n))

Add the end node
G.add_node("end")

6

Add edges corresponding to production in month 1
0 batches: green edges
for n in range(1, 4):

G.add_edge((1, n), (2, n - 1), length=1*(n - 1))

1 batch: blue edges
for n in range(0, 4):

G.add_edge((1, n), (2, n), length=5 + 2*(1) + 1*(n))

2 batches: orange edges
for n in range(0, 3):

G.add_edge((1, n), (2, n + 1), length=5 + 2*(2) + 1*(n + 1))

3 batches: purple edges
for n in range(0, 2):

G.add_edge((1, n), (2, n + 2), length=5 + 2*(3) + 1*(n + 2))

Add edges corresponding to production in month 2
0 batches: green edges
for n in range(2, 4):

G.add_edge((2, n), (3, n - 2), length=1*(n - 2))

1 batch: blue edges
for n in range(1, 4):

G.add_edge((2, n), (3, n - 1), length=5 + 2*(1) + 1*(n - 1))

2 batches: orange edges
for n in range(0, 4):

G.add_edge((2, n), (3, n), length=5 + 2*(2) + 1*(n))

3 batches: purple edges
for n in range(0, 3):

G.add_edge((2, n), (3, n + 1), length=5 + 2*(3) + 1*(n + 1))

Add edges corresponding to production in month 3
0 batches: not possible!

1 batch: blue edges
for n in range(3, 4):

G.add_edge((3, n), (4, n - 3), length=5 + 2*(1) + 1*(n - 3))

2 batches: orange edges
for n in range(2, 4):

G.add_edge((3, n), (4, n - 2), length=5 + 2*(2) + 1*(n - 2))

3 batches: purple edges
for n in range(1, 4):

G.add_edge((3, n), (4, n - 1), length=5 + 2*(3) + 1*(n - 1))

Add edges from last stage to the end node
for n in range(0, 4):

G.add_edge((4, n), "end", length=0)

Solve DP by solving its shortest path representation using Bellman-Ford
length, nodes, negative_cycle = bf.bellman_ford(G, source=(1, 0), target="end",
weight="length")
print("Shortest path length: {0}".format(length))
print("Shortest path: {0}".format(nodes))

Shortest path length: 30
Shortest path: [(1, 0), (2, 0), (3, 1), (4, 0), 'end']

7

● _eminimum total production and holding cost over the next 3 months is 30.

● To achieve this minimum cost, the company should produce 1 batch in month 1, 3 batches in month 2, and 3
batches in month 3.

8

	Overview
	The knapsack problem, revisited
	Tuples
	Back to the knapsack problem...
	Interpreting the output

	Practice makes perfect — on your own
	Assigning patrol cars to precincts
	Inventory management

